

ABSTRACT:

Tuning the Visible-Light-Drive Photocatalytic Properties of Multi-Decorated TiO₂ by Noble Metals Nanoparticles NPs Towards Both Propionic Acid and NO_x Degradation

G. Cerrato^{1,3}, A. Giordana^{1,3}, N. Haghshenas^{2,3}, E. Falletta^{2,3}, C. L. Bianchi^{2,3}

¹ Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy.

² Department of Chemistry, University of Milan, via C. Golgi 19, 20133, Milano, Italy.

³ Cons. Interuniv. Naz. INSTM, via Giusti 9, 50121, Florence, Italy

Unpleasant odors are the most disturbing pollutants and the main reason for air quality complaints in urban and industrial areas. Besides, nitrogen oxide (NO_x) emissions represent one of the most hazardous air pollutants, causing environmental and health problems, contributing to ground-level ozone, global warming, acid rain, and urban smog [1]. Among the many technologies available, photocatalysis carried out under solar or artificial light has been widely applied to address many air, and not only, pollution issues [2]. First discovered by Fujishima and Honda [3], TiO₂ applications in water and air purification under UV irradiation have multiplied so far: to extend its photo-response to the visible region, thus improving TiO₂ photocatalytic performance, surface modification with noble metals nanoparticles (NPs) has been studied as an efficient approach [4]. Nevertheless, noble metals' high prices and resource shortage limit their applications. In the present research we report the employ of multiple noble metals-modified micrometric TiO₂-based photocatalysts, prepared by a cheap and sustainable approach based on the use of metal-enriched wastewaters (Ag, Au, Pt) and used for the photodegradation of propionic acid (PA) and NO_x under LED irradiation. Properly tuning the metal decoration step, the photoactivity of the materials was optimized: in particular, 0.1%Pt @Ag/TiO₂ led to 60% PA removal, whereas the strong PA adsorption on the 0.1%Au @Ag/TiO₂ surface caused a partial deactivation. In contrast, 0.1%Au @Ag/TiO₂ showed the highest photoactivity in the NO_x decomposition (90%) due to the high tolerance of Au to HNO₃ produced on the catalyst surface.

- [1] Y. Wong, et al, *Appl. Catal. A Gen.* 648 118924 (2022).
- [2] Š. Nosek, et al, *J. Environ. Chem. Eng.*, 11, 109758 (2023).
- [3] A. Fujishima, K. Honda, *Nature*, 238, 37 (1972).
- [4] N. Rozman, et al, *Int. J. Hydrogen Energy*, 46, 32871 (2021).